Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unsupervised Domain Adaptation by Uncertain Feature Alignment

Published 14 Sep 2020 in cs.CV | (2009.06483v1)

Abstract: Unsupervised domain adaptation (UDA) deals with the adaptation of models from a given source domain with labeled data to an unlabeled target domain. In this paper, we utilize the inherent prediction uncertainty of a model to accomplish the domain adaptation task. The uncertainty is measured by Monte-Carlo dropout and used for our proposed Uncertainty-based Filtering and Feature Alignment (UFAL) that combines an Uncertain Feature Loss (UFL) function and an Uncertainty-Based Filtering (UBF) approach for alignment of features in Euclidean space. Our method surpasses recently proposed architectures and achieves state-of-the-art results on multiple challenging datasets. Code is available on the project website.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.