Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Computability, Learnability and Extractability of Finite State Machines from Recurrent Neural Networks (2009.06398v1)

Published 10 Sep 2020 in cs.LG, cs.AI, and cs.FL

Abstract: This work aims at shedding some light on connections between finite state machines (FSMs), and recurrent neural networks (RNNs). Examined connections in this master's thesis is threefold: the extractability of finite state machines from recurrent neural networks, learnability aspects and computationnal links. With respect to the former, the long-standing clustering hypothesis of RNN hidden state space when trained to recognize regular languages was explored, and new insights into this hypothesis through the lens of recent advances of the generalization theory of Deep Learning are provided. As for learnability, an extension of the active learning framework better suited to the problem of approximating RNNs with FSMs is proposed, with the aim of better formalizing the problem of RNN approximation by FSMs. Theoretical analysis of two possible scenarions in this framework were performed. With regard to computability, new computational results on the distance and the equivalence problem between RNNs trained as LLMs and different types of weighted finite state machines were given.

Citations (1)

Summary

We haven't generated a summary for this paper yet.