Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Learning for Few-Shot One-class Classification (2009.05353v2)

Published 11 Sep 2020 in cs.CV and cs.LG

Abstract: We propose a method that can perform one-class classification given only a small number of examples from the target class and none from the others. We formulate the learning of meaningful features for one-class classification as a meta-learning problem in which the meta-training stage repeatedly simulates one-class classification, using the classification loss of the chosen algorithm to learn a feature representation. To learn these representations, we require only multiclass data from similar tasks. We show how the Support Vector Data Description method can be used with our method, and also propose a simpler variant based on Prototypical Networks that obtains comparable performance, indicating that learning feature representations directly from data may be more important than which one-class algorithm we choose. We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario, obtaining similar results to the state-of-the-art of traditional one-class classification, and that improves upon that of one-class classification baselines employed in the few-shot setting. Our code is available at https://github.com/gdahia/meta_occ

Citations (4)

Summary

We haven't generated a summary for this paper yet.