Infinite p-adic random matrices and ergodic decomposition of p-adic Hua measures
Abstract: Neretin constructed an analogue of the Hua measures on the infinite $p$-adic matrices $Mat\left(\mathbb{N},\mathbb{Q}_p\right)$. Bufetov and Qiu classified the ergodic measures on $Mat\left(\mathbb{N},\mathbb{Q}_p\right)$ that are invariant under the natural action of $GL(\infty,\mathbb{Z}_p)\times GL(\infty,\mathbb{Z}_p)$. In this paper we solve the problem of ergodic decomposition for the $p$-adic Hua measures introduced by Neretin. We prove that the probability measure governing the ergodic decomposition has an explicit expression which identifies it with a Hall-Littlewood measure on partitions. Our arguments involve certain Markov chains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.