Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Model-based Reinforcement Learning for Infectious Disease Control (2009.04607v3)

Published 9 Sep 2020 in cs.LG and stat.ML

Abstract: Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health. Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses. In the face of an emerging infectious disease, a crucial question for policymakers is how to make the trade-off and implement the appropriate interventions timely given the huge uncertainty. In this work, we propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost. Specifically, at each decision point, a Bayesian epidemiological model is first learned as the environment model, and then the proposed model-based multi-objective planning algorithm is applied to find a set of Pareto-optimal policies. This framework, combined with the prediction bands for each policy, provides a real-time decision support tool for policymakers. The application is demonstrated with the spread of COVID-19 in China.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Runzhe Wan (19 papers)
  2. Xinyu Zhang (296 papers)
  3. Rui Song (130 papers)
Citations (20)