Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Algorithm for a Convergent Series of Approximations towards the Exact Solution of the Lowest Eigenstates of a Hamiltonian

Published 8 Sep 2020 in quant-ph, physics.chem-ph, and physics.comp-ph | (2009.03537v1)

Abstract: We present quantum algorithms, for Hamiltonians of linear combinations of local unitary operators, for Hamiltonian matrix-vector products and for preconditioning with the inverse of shifted reduced Hamiltonian operator that contributes to the diagonal matrix elements only. The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem. The algorithm scales with O(m5 ), with m the number of one-electron orbitals in the case of molecular electronic structure calculations. Full CI results can be obtained with a scaling of O(nm5 ), with n the number of electrons and a prefactor on the order of 10 to 20. With low orders of Hamiltonian matrix-vector products, a whole repertoire of approximations widely used in modern electronic structure theory, including various orders of perturbation theory and/or truncated CI at different orders of excitations can be implemented for quantum computing for both routine and benchmark results at chemical accuracy. The lowest order matrix-vector product with preconditioning, basically the second-order perturbation theory, is expected to be a leading algorithm for demonstrating quantum supremacy for Ab Initio simulations, one of the most anticipated real world applications. The algorithm is also applicable for the hybrid variational quantum eigensolver.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.