Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Theoretic Meta Learning with Gaussian Processes (2009.03228v3)

Published 7 Sep 2020 in cs.LG, cs.AI, and stat.ML

Abstract: We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck. The idea is to learn a stochastic representation or encoding of the task description, given by a training set, that is highly informative about predicting the validation set. By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning. This framework unifies existing gradient-based algorithms and also allows us to derive new algorithms. In particular, we develop a memory-based algorithm that uses Gaussian processes to obtain non-parametric encoding representations. We demonstrate our method on a few-shot regression problem and on four few-shot classification problems, obtaining competitive accuracy when compared to existing baselines.

Citations (15)

Summary

We haven't generated a summary for this paper yet.