Papers
Topics
Authors
Recent
2000 character limit reached

Energy-preserving mixed finite element methods for the Hodge wave equation

Published 7 Sep 2020 in math.NA and cs.NA | (2009.02844v1)

Abstract: Energy-preserving numerical methods for solving the Hodge wave equation is developed in this paper. Based on the de Rham complex, the Hodge wave equation can be formulated as a first-order system and mixed finite element methods using finite element exterior calculus is used to discretize the space. A continuous time Galerkin method, which can be viewed as a modification of the Crank-Nicolson method, is used to discretize the time which results in a full discrete method preserving the energy exactly when the source term is vanished. A projection based operator is used to establish the optimal order convergence of the proposed methods. Numerical experiments are present to support the theoretical results.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.