Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Change-Detection Based Thompson Sampling Framework for Non-Stationary Bandits (2009.02791v1)

Published 6 Sep 2020 in cs.LG and eess.SP

Abstract: We consider a non-stationary two-armed bandit framework and propose a change-detection based Thompson sampling (TS) algorithm, named TS with change-detection (TS-CD), to keep track of the dynamic environment. The non-stationarity is modeled using a Poisson arrival process, which changes the mean of the rewards on each arrival. The proposed strategy compares the empirical mean of the recent rewards of an arm with the estimate of the mean of the rewards from its history. It detects a change when the empirical mean deviates from the mean estimate by a value larger than a threshold. Then, we characterize the lower bound on the duration of the time-window for which the bandit framework must remain stationary for TS-CD to successfully detect a change when it occurs. Consequently, our results highlight an upper bound on the parameter for the Poisson arrival process, for which the TS-CD achieves asymptotic regret optimality with high probability. Finally, we validate the efficacy of TS-CD by testing it for edge-control of radio access technique (RAT)-selection in a wireless network. Our results show that TS-CD not only outperforms the classical max-power RAT selection strategy but also other actively adaptive and passively adaptive bandit algorithms that are designed for non-stationary environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Gourab Ghatak (31 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.