Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generative Adversarial Approach To ECG Synthesis And Denoising (2009.02700v1)

Published 6 Sep 2020 in cs.LG and eess.SP

Abstract: Generative Adversarial Networks (GAN) are known to produce synthetic data that are difficult to discern from real ones by humans. In this paper we present an approach to use GAN to produce realistically looking ECG signals. We utilize them to train and evaluate a denoising autoencoder that achieves state-of-the-art filtering quality for ECG signals. It is demonstrated that generated data improves the model performance compared to the model trained on real data only. We also investigate an effect of transfer learning by reusing trained discriminator network for denoising model.

Citations (11)

Summary

We haven't generated a summary for this paper yet.