Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Framework for Private Matrix Analysis

Published 6 Sep 2020 in cs.LG, cs.CR, cs.DS, and stat.ML | (2009.02668v1)

Abstract: We study private matrix analysis in the sliding window model where only the last $W$ updates to matrices are considered useful for analysis. We give first efficient $o(W)$ space differentially private algorithms for spectral approximation, principal component analysis, and linear regression. We also initiate and show efficient differentially private algorithms for two important variants of principal component analysis: sparse principal component analysis and non-negative principal component analysis. Prior to our work, no such result was known for sparse and non-negative differentially private principal component analysis even in the static data setting. These algorithms are obtained by identifying sufficient conditions on positive semidefinite matrices formed from streamed matrices. We also show a lower bound on space required to compute low-rank approximation even if the algorithm gives multiplicative approximation and incurs additive error. This follows via reduction to a certain communication complexity problem.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.