Papers
Topics
Authors
Recent
Search
2000 character limit reached

QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation system based on ensemble of language model

Published 6 Sep 2020 in cs.CL and cs.AI | (2009.02645v1)

Abstract: In this paper, we present LLM system submitted to SemEval-2020 Task 4 competition: "Commonsense Validation and Explanation". We participate in two subtasks for subtask A: validation and subtask B: Explanation. We implemented with transfer learning using pretrained LLMs (BERT, XLNet, RoBERTa, and ALBERT) and fine-tune them on this task. Then we compared their characteristics in this task to help future researchers understand and use these models more properly. The ensembled model better solves this problem, making the model's accuracy reached 95.9% on subtask A, which just worse than human's by only 3% accuracy.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.