QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation system based on ensemble of language model
Abstract: In this paper, we present LLM system submitted to SemEval-2020 Task 4 competition: "Commonsense Validation and Explanation". We participate in two subtasks for subtask A: validation and subtask B: Explanation. We implemented with transfer learning using pretrained LLMs (BERT, XLNet, RoBERTa, and ALBERT) and fine-tune them on this task. Then we compared their characteristics in this task to help future researchers understand and use these models more properly. The ensembled model better solves this problem, making the model's accuracy reached 95.9% on subtask A, which just worse than human's by only 3% accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.