Papers
Topics
Authors
Recent
2000 character limit reached

A Hybrid PAC Reinforcement Learning Algorithm

Published 5 Sep 2020 in cs.LG and stat.ML | (2009.02602v2)

Abstract: This paper offers a new hybrid probably approximately correct (PAC) reinforcement learning (RL) algorithm for Markov decision processes (MDPs) that intelligently maintains favorable features of its parents. The designed algorithm, referred to as the Dyna-Delayed Q-learning (DDQ) algorithm, combines model-free and model-based learning approaches while outperforming both in most cases. The paper includes a PAC analysis of the DDQ algorithm and a derivation of its sample complexity. Numerical results are provided to support the claim regarding the new algorithm's sample efficiency compared to its parents as well as the best known model-free and model-based algorithms in application.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.