End-to-End Deep Learning Model for Cardiac Cycle Synchronization from Multi-View Angiographic Sequences
Abstract: Dynamic reconstructions (3D+T) of coronary arteries could give important perfusion details to clinicians. Temporal matching of the different views, which may not be acquired simultaneously, is a prerequisite for an accurate stereo-matching of the coronary segments. In this paper, we show how a neural network can be trained from angiographic sequences to synchronize different views during the cardiac cycle using raw x-ray angiography videos exclusively. First, we train a neural network model with angiographic sequences to extract features describing the progression of the cardiac cycle. Then, we compute the distance between the feature vectors of every frame from the first view with those from the second view to generate distance maps that display stripe patterns. Using pathfinding, we extract the best temporally coherent associations between each frame of both videos. Finally, we compare the synchronized frames of an evaluation set with the ECG signals to show an alignment with 96.04% accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.