Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fisher-KPP equation with small data and the extremal process of branching Brownian motion (2009.02042v2)

Published 4 Sep 2020 in math.PR and math.AP

Abstract: We consider the limiting extremal process ${\mathcal X}$ of the particles of the binary branching Brownian motion. We show that after a shift by the logarithm of the derivative martingale $Z$, the rescaled "density" of particles, which are at distance $n+x$ from a position close to the tip of ${\mathcal X}$, converges in probability to a multiple of the exponential $ex$ as $n\to+\infty$. We also show that the fluctuations of the density, after another scaling and an additional random but explicit shift, converge to a $1$-stable random variable. Our approach uses analytic techniques and is motivated by the connection between the properties of the branching Brownian motion and the Bramson shift of the solutions to the Fisher-KPP equation with some specific initial conditions initiated in \cite{BD1,BD2} and further developed in the present paper. The proofs of the limit theorems for ${\mathcal X}$ rely crucially on the fine asymptotics of the behavior of the Bramson shift for the Fisher-KPP equation starting with initial conditions of "size" $0<\varepsilon\ll 1$, up to terms of the order $[{(\log \varepsilon{-1})]{-1-\gamma}}$, with some $\gamma>0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.