Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIPGAN -- Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN (2009.01729v3)

Published 3 Sep 2020 in cs.CV and cs.CR

Abstract: Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Haoyu Zhang (95 papers)
  2. Sushma Venkatesh (20 papers)
  3. Raghavendra Ramachandra (70 papers)
  4. Kiran Raja (42 papers)
  5. Naser Damer (96 papers)
  6. Christoph Busch (106 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.