Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data Series Indexing Gone Parallel

Published 2 Sep 2020 in cs.DB | (2009.01614v1)

Abstract: Data series similarity search is a core operation for several data series analysis applications across many different domains. However, the state-of-the-art techniques fail to deliver the time performance required for interactive exploration, or analysis of large data series collections. In this Ph.D. work, we present the first data series indexing solutions, for both on-disk and in-memory data, that are designed to inherently take advantage of multi-core architectures, in order to accelerate similarity search processing times. Our experiments on a variety of synthetic and real data demonstrate that our approaches are up to orders of magnitude faster than the alternatives. More specifically, our on-disk solution can answer exact similarity search queries on 100GB datasets in a few seconds, and our in-memory solution in a few milliseconds, which enables real-time, interactive data exploration on very large data series collections.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.