Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Series Indexing Gone Parallel (2009.01614v1)

Published 2 Sep 2020 in cs.DB

Abstract: Data series similarity search is a core operation for several data series analysis applications across many different domains. However, the state-of-the-art techniques fail to deliver the time performance required for interactive exploration, or analysis of large data series collections. In this Ph.D. work, we present the first data series indexing solutions, for both on-disk and in-memory data, that are designed to inherently take advantage of multi-core architectures, in order to accelerate similarity search processing times. Our experiments on a variety of synthetic and real data demonstrate that our approaches are up to orders of magnitude faster than the alternatives. More specifically, our on-disk solution can answer exact similarity search queries on 100GB datasets in a few seconds, and our in-memory solution in a few milliseconds, which enables real-time, interactive data exploration on very large data series collections.

Citations (2)

Summary

We haven't generated a summary for this paper yet.