Papers
Topics
Authors
Recent
2000 character limit reached

Performance Analysis and Non-Quadratic Lyapunov Functions for Linear Time-Varying Systems

Published 1 Sep 2020 in eess.SY, cs.SY, and math.OC | (2009.00727v2)

Abstract: Performance analysis for linear time-invariant (LTI) systems has been closely tied to quadratic Lyapunov functions ever since it was shown that LTI system stability is equivalent to the existence of such a Lyapunov function. Some metrics for LTI systems, however, have resisted treatment via means of quadratic Lyapunov functions. Among these, point-wise-in-time metrics, such as peak norms, are not captured accurately using these techniques, and this shortcoming has prevented the development of tools to analyze system behavior by means other than e.g. time-domain simulations. This work demonstrates how the more general class of homogeneous polynomial Lyapunov functions can be used to approximate point-wise-in-time behavior for LTI systems with greater accuracy, and we extend this to the case of linear time-varying (LTV) systems as well. Our findings rely on the recent observation that the search for homogeneous polynomial Lyapunov functions for LTV systems can be recast as a search for quadratic Lyapunov functions for a related hierarchy of time-varying Lyapunov differential equations; thus, performance guarantees for LTV systems are attainable without heavy computation. Numerous examples are provided to demonstrate the findings of this work.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.