Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Series Representation for Riemann's Zeta Function and some Interesting Identities that Follow

Published 29 Aug 2020 in math.CA and math.CV | (2009.00446v2)

Abstract: Using Cauchy's Integral Theorem as a basis, what may be a new series representation for Dirichlet's function $\eta(s)$, and hence Riemann's function $\zeta(s)$, is obtained in terms of the Exponential Integral function $E_{s}(i\kappa)$ of complex argument. From this basis, infinite sums are evaluated, unusual integrals are reduced to known functions and interesting identities are unearthed. The incomplete functions $\zeta{\pm}(s)$ and $\eta{\pm}(s)$ are defined and shown to be intimately related to some of these interesting integrals. An identity relating Euler, Bernouli and Harmonic numbers is developed. It is demonstrated that a known simple integral with complex endpoints can be utilized to evaluate a large number of different integrals, by choosing varying paths between the endpoints.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.