Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choosability with Separation of Cycles and Outerplanar Graphs (2009.00287v1)

Published 1 Sep 2020 in math.CO and cs.DM

Abstract: We consider the following list coloring with separation problem of graphs: Given a graph $G$ and integers $a,b$, find the largest integer $c$ such that for any list assignment $L$ of $G$ with $|L(v)|\le a$ for any vertex $v$ and $|L(u)\cap L(v)|\le c$ for any edge $uv$ of $G$, there exists an assignment $\varphi$ of sets of integers to the vertices of $G$ such that $\varphi(u)\subset L(u)$ and $|\varphi(v)|=b$ for any vertex $v$ and $\varphi(u)\cap \varphi(v)=\emptyset$ for any edge $uv$. Such a value of $c$ is called the separation number of $(G,a,b)$. We also study the variant called the free-separation number which is defined analogously but assuming that one arbitrary vertex is precolored. We determine the separation number and free-separation number of the cycle and derive from them the free-separation number of a cactus. We also present a lower bound for the separation and free-separation numbers of outerplanar graphs of girth $g\ge 5$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.