Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On List Coloring with Separation of the Complete Graph and Set System Intersections (2209.03436v1)

Published 7 Sep 2022 in math.CO and cs.DM

Abstract: We consider the following list coloring with separation problem: Given a graph $G$ and integers $a,b$, find the largest integer $c$ such that for any list assignment $L$ of $G$ with $|L(v)|= a$ for any vertex $v$ and $|L(u)\cap L(v)|\le c$ for any edge $uv$ of $G$, there exists an assignment $\varphi$ of sets of integers to the vertices of $G$ such that $\varphi(u)\subset L(u)$ and $|\varphi(v)|=b$ for any vertex $u$ and $\varphi(u)\cap \varphi(v)=\emptyset$ for any edge $uv$. Such a value of $c$ is called the separation number of $(G,a,b)$. Using a special partition of a set of lists for which we obtain an improved version of Poincar\'e's crible, we determine the separation number of the complete graph $K_n$ for some values of $a,b$ and $n$, and prove bounds for the remaining values.

Summary

We haven't generated a summary for this paper yet.