Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Five-list-coloring graphs on surfaces II. A linear bound for critical graphs in a disk (1505.05927v1)

Published 22 May 2015 in math.CO and cs.DM

Abstract: Let $G$ be a plane graph with outer cycle $C$ and let $(L(v):v\in V(G))$ be a family of sets such that $|L(v)|\ge 5$ for every $v\in V(G)$. By an $L$-coloring of a subgraph $J$ of $G$ we mean a (proper) coloring $\phi$ of $J$ such that $\phi(v)\in L(v)$ for every vertex $v$ of $J$. We prove a conjecture of Dvorak et al. that if $H$ is a minimal subgraph of $G$ such that $C$ is a subgraph of $H$ and every $L$-coloring of $C$ that extends to an $L$-coloring of $H$ also extends to an $L$-coloring of $G$, then $|V(H)|\le 19|V(C)|$. This is a lemma that plays an important role in subsequent papers, because it motivates the study of graphs embedded in surfaces that satisfy an isoperimetric inequality suggested by this result. Such study turned out to be quite profitable for the subject of list coloring graphs on surfaces.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Luke Postle (67 papers)
  2. Robin Thomas (51 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.