Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reconfiguration graphs of zero forcing sets

Published 1 Sep 2020 in math.CO and cs.DM | (2009.00220v1)

Abstract: This paper begins the study of reconfiguration of zero forcing sets, and more specifically, the zero forcing graph. Given a base graph $G$, its zero forcing graph, $\mathscr{Z}(G)$, is the graph whose vertices are the minimum zero forcing sets of $G$ with an edge between vertices $B$ and $B'$ of $\mathscr{Z}(G)$ if and only if $B$ can be obtained from $B'$ by changing a single vertex of $G$. It is shown that the zero forcing graph of a forest is connected, but that many zero forcing graphs are disconnected. We characterize the base graphs whose zero forcing graphs are either a path or the complete graph, and show that the star cannot be a zero forcing graph. We show that computing $\mathscr{Z}(G)$ takes $2{\Theta(n)}$ operations in the worst case for a graph $G$ of order $n$.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.