Discrete Curvature and Torsion from Cross-Ratios
Abstract: Motivated by a M\"obius invariant subdivision scheme for polygons, we study a curvature notion for discrete curves where the cross-ratio plays an important role in all our key definitions. Using a particular M\"obius invariant point-insertion-rule, comparable to the classical four-point-scheme, we construct circles along discrete curves. Asymptotic analysis shows that these circles defined on a sampled curve converge to the smooth curvature circles as the sampling density increases. We express our discrete torsion for space curves, which is not a M\"obius invariant notion, using the cross-ratio and show its asymptotic behavior in analogy to the curvature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.