Papers
Topics
Authors
Recent
2000 character limit reached

High-order energy stable schemes of incommensurate phase-field crystal model

Published 28 Aug 2020 in math.NA and cs.NA | (2008.12637v1)

Abstract: This article focuses on the development of high-order energy stable schemes for the multi-length-scale incommensurate phase-field crystal model which is able to study the phase behavior of aperiodic structures. These high-order schemes based on the scalar auxiliary variable (SAV) and spectral deferred correction (SDC) approaches are suitable for the L 2 gradient flow equation, i.e., the Allen-Cahn dynamic equation. Concretely, we propose a second-order Crank-Nicolson (CN) scheme of the SAV system, prove the energy dissipation law, and give the error estimate in the almost periodic function sense. Moreover, we use the SDC method to improve the computational accuracy of the SAV/CN scheme. Numerical results demonstrate the advantages of high-order numerical methods in numerical computations and show the influence of length-scales on the formation of ordered structures.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.