Papers
Topics
Authors
Recent
Search
2000 character limit reached

Full Level Structure on Some Group Schemes

Published 27 Aug 2020 in math.NT and math.AG | (2008.12400v2)

Abstract: We give a definition of full level structure on group schemes of the form $G\times G$, where $G$ is a finite flat commutative group scheme of rank $p$ over a $\mathbb{Z}_p$-scheme $S$ or, more generally, a truncated $p$-divisible group of height $1$. We show that there is no natural notion of full level structure over the stack of all finite flat commutative group schemes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.