Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Rumor Detection in Social Media Using Dynamic Propagation Structures (2008.12154v1)

Published 27 Aug 2020 in cs.SI

Abstract: Social media, such as Facebook and Twitter, has become one of the most important channels for information dissemination. However, these social media platforms are often misused to spread rumors, which has brought about severe social problems, and consequently, there are urgent needs for automatic rumor detection techniques. Existing work on rumor detection concentrates more on the utilization of textual features, but diffusion structure itself can provide critical propagating information in identifying rumors. Previous works which have considered structural information, only utilize limited propagation structures. Moreover, few related research has considered the dynamic evolution of diffusion structures. To address these issues, in this paper, we propose a Neural Model using Dynamic Propagation Structures (NM-DPS) for rumor detection in social media. Firstly, we propose a partition approach to model the dynamic evolution of propagation structure and then use temporal attention based neural model to learn a representation for the dynamic structure. Finally, we fuse the structure representation and content features into a unified framework for effective rumor detection. Experimental results on two real-world social media datasets demonstrate the salience of dynamic propagation structure information and the effectiveness of our proposed method in capturing the dynamic structure.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shuai Wang (466 papers)
  2. Qingchao Kong (7 papers)
  3. Yuqi Wang (62 papers)
  4. Lei Wang (975 papers)
Citations (6)