Papers
Topics
Authors
Recent
2000 character limit reached

GraphFederator: Federated Visual Analysis for Multi-party Graphs

Published 27 Aug 2020 in cs.HC, cs.CR, and cs.GR | (2008.11989v1)

Abstract: This paper presents GraphFederator, a novel approach to construct joint representations of multi-party graphs and supports privacy-preserving visual analysis of graphs. Inspired by the concept of federated learning, we reformulate the analysis of multi-party graphs into a decentralization process. The new federation framework consists of a shared module that is responsible for joint modeling and analysis, and a set of local modules that run on respective graph data. Specifically, we propose a federated graph representation model (FGRM) that is learned from encrypted characteristics of multi-party graphs in local modules. We also design multiple visualization views for joint visualization, exploration, and analysis of multi-party graphs. Experimental results with two datasets demonstrate the effectiveness of our approach.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.