Unlabeled Data Help in Graph-Based Semi-Supervised Learning: A Bayesian Nonparametrics Perspective
Abstract: In this paper we analyze the graph-based approach to semi-supervised learning under a manifold assumption. We adopt a Bayesian perspective and demonstrate that, for a suitable choice of prior constructed with sufficiently many unlabeled data, the posterior contracts around the truth at a rate that is minimax optimal up to a logarithmic factor. Our theory covers both regression and classification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.