Papers
Topics
Authors
Recent
Search
2000 character limit reached

3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction

Published 25 Aug 2020 in eess.IV, cs.CV, and cs.LG | (2008.11576v2)

Abstract: Glioma, the malignant brain tumor, requires immediate treatment to improve the survival of patients. Gliomas heterogeneous nature makes the segmentation difficult, especially for sub-regions like necrosis, enhancing tumor, non-enhancing tumor, and Edema. Deep neural networks like full convolution neural networks and ensemble of fully convolution neural networks are successful for Glioma segmentation. The paper demonstrates the use of a 3D fully convolution neural network with a three layer encoder decoder approach for layer arrangement. The encoder blocks include the dense modules, and decoder blocks include convolution modules. The input to the network is 3D patches. The loss function combines dice loss and focal loss functions. The validation set dice score of the network is 0.74, 0.88, and 0.73 for enhancing tumor, whole tumor, and tumor core, respectively. The Random Forest Regressor uses shape, volumetric, and age features extracted from ground truth for overall survival prediction. The regressor achieves an accuracy of 44.8% on the validation set.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.