Papers
Topics
Authors
Recent
2000 character limit reached

Unconstrained optimisation on Riemannian manifolds

Published 25 Aug 2020 in math.OC, cs.LG, math.DG, math.DS, and stat.ML | (2008.11091v2)

Abstract: In this paper, we give explicit descriptions of versions of (Local-) Backtracking Gradient Descent and New Q-Newton's method to the Riemannian setting.Here are some easy to state consequences of results in this paper, where X is a general Riemannian manifold of finite dimension and $f:X\rightarrow \mathbb{R}$ a $C2$ function which is Morse (that is, all its critical points are non-degenerate). {\bf Theorem.} For random choices of the hyperparameters in the Riemanian Local Backtracking Gradient Descent algorithm and for random choices of the initial point $x_0$, the sequence ${x_n}$ constructed by the algorithm either (i) converges to a local minimum of $f$ or (ii) eventually leaves every compact subsets of $X$ (in other words, diverges to infinity on $X$). If $f$ has compact sublevels, then only the former alternative happens. The convergence rate is the same as in the classical paper by Armijo. {\bf Theorem.} Assume that $f$ is $C3$. For random choices of the hyperparametes in the Riemannian New Q-Newton's method, if the sequence constructed by the algorithm converges, then the limit is a critical point of $f$. We have a local Stable-Center manifold theorem, near saddle points of $f$, for the dynamical system associated to the algorithm. If the limit point is a non-degenerate minimum point, then the rate of convergence is quadratic. If moreover $X$ is an open subset of a Lie group and the initial point $x_0$ is chosen randomly, then we can globally avoid saddle points. As an application, we propose a general method using Riemannian Backtracking GD to find minimum of a function on a bounded ball in a Euclidean space, and do explicit calculations for calculating the smallest eigenvalue of a symmetric square matrix.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.