Papers
Topics
Authors
Recent
2000 character limit reached

Instability Margin Analysis for Parametrized LTI Systems with Application to Repressilator

Published 25 Aug 2020 in eess.SY, cs.SY, and q-bio.QM | (2008.10983v4)

Abstract: This paper is concerned with a robust instability analysis for the single-input-single-output unstable linear time-invariant (LTI) system under dynamic perturbations. The nominal system itself is possibly perturbed by the static gain of the uncertainty, which would be the case when a nonlinear uncertain system is linearized around an equilibrium point. We define the robust instability radius as the smallest $H_\infty$ norm of the stable linear perturbation that stabilizes the nominal system. There are two main theoretical results: one is on a partial characterization of unperturbed nominal systems for which the robust instability radius can be calculated exactly, and the other is a numerically tractable procedure for calculating the exact robust instability radius for nominal systems parametrized by a perturbation parameter. The results are applied to the repressilator in synthetic biology, where hyperbolic instability of a unique equilibrium guarantees the persistence of oscillation phenomena in the global sense, and the effectiveness of our linear robust instability analysis is confirmed by numerical simulations.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.