Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking the Communities: Characterizing community changing users using text mining and graph machine learning on Twitter (2008.10749v2)

Published 24 Aug 2020 in cs.SI and cs.LG

Abstract: Even though the Internet and social media have increased the amount of news and information people can consume, most users are only exposed to content that reinforces their positions and isolates them from other ideological communities. This environment has real consequences with great impact on our lives like severe political polarization, easy spread of fake news, political extremism, hate groups and the lack of enriching debates, among others. Therefore, encouraging conversations between different groups of users and breaking the closed community is of importance for healthy societies. In this paper, we characterize and study users who break their community on Twitter using natural language processing techniques and graph machine learning algorithms. In particular, we collected 9 million Twitter messages from 1.5 million users and constructed the retweet networks. We identified their communities and topics of discussion associated to them. With this data, we present a machine learning framework for social media users classification which detects "community breakers", i.e. users that swing from their closed community to another one. A feature importance analysis in three Twitter polarized political datasets showed that these users have low values of PageRank, suggesting that changes are driven because their messages have no response in their communities. This methodology also allowed us to identify their specific topics of interest, providing a fully characterization of this kind of users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Federico Albanese (8 papers)
  2. Leandro Lombardi (3 papers)
  3. Esteban Feuerstein (6 papers)
  4. Pablo Balenzuela (26 papers)

Summary

We haven't generated a summary for this paper yet.