Lowest non-zero vanishing cohomology of holomorphic functions (2008.10529v4)
Abstract: We study the vanishing cycle complex $\varphi_fA_X$ for a holomorphic function $f$ on a reduced complex analytic space $X$ with $A$ a Dedekind domain (for instance, a localization of the ring of integers of a cyclotomic field, where the monodromy eigenvalue decomposition may hold after a localization of $A$). Assuming the perversity of the shifted constant sheaf $A_X[d_X]$, we show that the lowest possibly-non-zero vanishing cohomology at $0\in X$ can be calculated by the restriction of $\varphi_fA_X$ to an appropriate nearby curve in the singular locus $Y$ of $f$, which is given by intersecting $Y$ with the intersection of sufficiently general hyperplanes in the ambient space passing sufficiently near 0. The proof uses a Lefschetz type theorem for local fundamental groups. In the homogeneous polynomial case, a similar assertion follows from Artin's vanishing theorem. By a related argument we can show the vanishing of the non-unipotent monodromy part of the first Milnor cohomology for many central hyperplane arrangements with ambient dimension at least 4.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.