Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global-local Enhancement Network for NMFs-aware Sign Language Recognition

Published 24 Aug 2020 in cs.CV | (2008.10428v2)

Abstract: Sign language recognition (SLR) is a challenging problem, involving complex manual features, i.e., hand gestures, and fine-grained non-manual features (NMFs), i.e., facial expression, mouth shapes, etc. Although manual features are dominant, non-manual features also play an important role in the expression of a sign word. Specifically, many sign words convey different meanings due to non-manual features, even though they share the same hand gestures. This ambiguity introduces great challenges in the recognition of sign words. To tackle the above issue, we propose a simple yet effective architecture called Global-local Enhancement Network (GLE-Net), including two mutually promoted streams towards different crucial aspects of SLR. Of the two streams, one captures the global contextual relationship, while the other stream captures the discriminative fine-grained cues. Moreover, due to the lack of datasets explicitly focusing on this kind of features, we introduce the first non-manual-features-aware isolated Chinese sign language dataset~(NMFs-CSL) with a total vocabulary size of 1,067 sign words in daily life. Extensive experiments on NMFs-CSL and SLR500 datasets demonstrate the effectiveness of our method.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.