Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Community-Aware Graph Signal Processing (2008.10375v1)

Published 24 Aug 2020 in eess.SP

Abstract: The emerging field of graph signal processing (GSP) allows to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role to study graph properties and measure graph signal smoothness. Here instead, we propose the graph modularity matrix as the centerpiece of GSP, in order to incorporate knowledge about graph community structure when processing signals on the graph, but without the need for community detection. We study this approach in several generic settings such as filtering, optimal sampling and reconstruction, surrogate data generation, and denoising. Feasibility is illustrated by a small-scale example and a transportation network dataset, as well as one application in human neuroimaging where community-aware GSP reveals relationships between behavior and brain features that are not shown by Laplacian-based GSP. This work demonstrates how concepts from network science can lead to new meaningful operations on graph signals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.