Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Graph Signal Processing: Modulation, Convolution, and Sampling (1912.06762v1)

Published 14 Dec 2019 in eess.SP

Abstract: To analyze data supported by arbitrary graphs G, DSP has been extended to Graph Signal Processing (GSP) by redefining traditional DSP concepts like shift, filtering, and Fourier transform among others. This paper revisits modulation, convolution, and sampling of graph signals as appropriate natural extensions of the corresponding DSP concepts. To define these for both the vertex and the graph frequency domains, we associate with generic data graph G and its graph shift A, a graph spectral shift M and a spectral graph Gs. This leads to a spectral GSP theory that parallels in the graph frequency domain the existing GSP theory in the vertex domain. The paper applies this to design and recovery sampling techniques for data supported by arbitrary directed graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.