Goodness-of-fit tests for functional linear models based on integrated projections
Abstract: Functional linear models are one of the most fundamental tools to assess the relation between two random variables of a functional or scalar nature. This contribution proposes a goodness-of-fit test for the functional linear model with functional response that neatly adapts to functional/scalar responses/predictors. In particular, the new goodness-of-fit test extends a previous proposal for scalar response. The test statistic is based on a convenient regularized estimator, is easy to compute, and is calibrated through an efficient bootstrap resampling. A graphical diagnostic tool, useful to visualize the deviations from the model, is introduced and illustrated with a novel data application. The R package goffda implements the proposed methods and allows for the reproducibility of the data application.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.