Papers
Topics
Authors
Recent
Search
2000 character limit reached

GraphReach: Position-Aware Graph Neural Network using Reachability Estimations

Published 19 Aug 2020 in cs.SI, cs.LG, and stat.ML | (2008.09657v4)

Abstract: Majority of the existing graph neural networks (GNN) learn node embeddings that encode their local neighborhoods but not their positions. Consequently, two nodes that are vastly distant but located in similar local neighborhoods map to similar embeddings in those networks. This limitation prevents accurate performance in predictive tasks that rely on position information. In this paper, we develop GraphReach, a position-aware inductive GNN that captures the global positions of nodes through reachability estimations with respect to a set of anchor nodes. The anchors are strategically selected so that reachability estimations across all the nodes are maximized. We show that this combinatorial anchor selection problem is NP-hard and, consequently, develop a greedy (1-1/e) approximation heuristic. Empirical evaluation against state-of-the-art GNN architectures reveal that GraphReach provides up to 40% relative improvement in accuracy. In addition, it is more robust to adversarial attacks.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.