Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profile Matching Across Online Social Networks (2008.09608v1)

Published 20 Aug 2020 in cs.SI and cs.CR

Abstract: In this work, we study the privacy risk due to profile matching across online social networks (OSNs), in which anonymous profiles of OSN users are matched to their real identities using auxiliary information about them. We consider different attributes that are publicly shared by users. Such attributes include both strong identifiers such as user name and weak identifiers such as interest or sentiment variation between different posts of a user in different platforms. We study the effect of using different combinations of these attributes to profile matching in order to show the privacy threat in an extensive way. The proposed framework mainly relies on machine learning techniques and optimization algorithms. We evaluate the proposed framework on three datasets (Twitter - Foursquare, Google+ - Twitter, and Flickr) and show how profiles of the users in different OSNs can be matched with high probability by using the publicly shared attributes and/or the underlying graphical structure of the OSNs. We also show that the proposed framework notably provides higher precision values compared to state-of-the-art that relies on machine learning techniques. We believe that this work will be a valuable step to build a tool for the OSN users to understand their privacy risks due to their public sharings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anisa Halimi (12 papers)
  2. Erman Ayday (42 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.