Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the genera of polyhedral embeddings of cubic graph (2008.09467v3)

Published 21 Aug 2020 in math.CO

Abstract: In this article we present theoretical and computational results on the existence of polyhedral embeddings of graphs. The emphasis is on cubic graphs. We also describe an efficient algorithm to compute all polyhedral embeddings of a given cubic graph and constructions for cubic graphs with some special properties of their polyhedral embeddings. Some key results are that even cubic graphs with a polyhedral embedding on the torus can also have polyhedral embeddings in arbitrarily high genus, in fact in a genus {\em close} to the theoretical maximum for that number of vertices, and that there is no bound on the number of genera in which a cubic graph can have a polyhedral embedding. While these results suggest a large variety of polyhedral embeddings, computations for up to 28 vertices suggest that by far most of the cubic graphs do not have a polyhedral embedding in any genus and that the ratio of these graphs is increasing with the number of vertices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.