Papers
Topics
Authors
Recent
2000 character limit reached

Blind Mask to Improve Intelligibility of Non-Stationary Noisy Speech

Published 20 Aug 2020 in eess.AS, cs.SD, and eess.SP | (2008.09175v1)

Abstract: This letter proposes a novel blind acoustic mask (BAM) designed to adaptively detect noise components and preserve target speech segments in time-domain. A robust standard deviation estimator is applied to the non-stationary noisy speech to identify noise masking elements. The main contribution of the proposed solution is the use of this noise statistics to derive an adaptive information to define and select samples with lower noise proportion. Thus, preserving speech intelligibility. Additionally, no information of the target speech and noise signals statistics is previously required to this non-ideal mask. The BAM and three competitive methods, Ideal Binary Mask (IBM), Target Binary Mask (TBM), and Non-stationary Noise Estimation for Speech Enhancement (NNESE), are evaluated considering speech signals corrupted by three non-stationary acoustic noises and six values of signal-to-noise ratio (SNR). Results demonstrate that the BAM technique achieves intelligibility gains comparable to ideal masks while maintaining good speech quality.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.