Papers
Topics
Authors
Recent
2000 character limit reached

Not one but many Tradeoffs: Privacy Vs. Utility in Differentially Private Machine Learning

Published 20 Aug 2020 in cs.CR | (2008.08807v2)

Abstract: Data holders are increasingly seeking to protect their user's privacy, whilst still maximizing their ability to produce machine models with high quality predictions. In this work, we empirically evaluate various implementations of differential privacy (DP), and measure their ability to fend off real-world privacy attacks, in addition to measuring their core goal of providing accurate classifications. We establish an evaluation framework to ensure each of these implementations are fairly evaluated. Our selection of DP implementations add DP noise at different positions within the framework, either at the point of data collection/release, during updates while training of the model, or after training by perturbing learned model parameters. We evaluate each implementation across a range of privacy budgets, and datasets, each implementation providing the same mathematical privacy guarantees. By measuring the models' resistance to real world attacks of membership and attribute inference, and their classification accuracy. we determine which implementations provide the most desirable tradeoff between privacy and utility. We found that the number of classes of a given dataset is unlikely to influence where the privacy and utility tradeoff occurs. Additionally, in the scenario that high privacy constraints are required, perturbing input training data does not trade off as much utility, as compared to noise added later in the ML process.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.