Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong consistent model selection for general causal time series (2008.08778v1)

Published 20 Aug 2020 in math.ST and stat.TH

Abstract: We consider the strongly consistent question for model selection in a large class of causal time series models, including AR($\infty$), ARCH($\infty$), TARCH($\infty$), ARMA-GARCH and many classical others processes. We propose a penalized criterion based on the quasi likelihood of the model. We provide sufficient conditions that ensure the strong consistency of the proposed procedure. Also, the estimator of the parameter of the selected model obeys the law of iterated logarithm. It appears that, unlike the result of the weak consistency obtained by Bardet {\it et al.} \cite{Bardet2020}, a dependence between the regularization parameter and the model structure is not needed.

Summary

We haven't generated a summary for this paper yet.