Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Geometric Quantum Thermodynamics (2008.08683v2)

Published 19 Aug 2020 in quant-ph, cond-mat.stat-mech, and math.DS

Abstract: Building on parallels between geometric quantum mechanics and classical mechanics, we explore an alternative basis for quantum thermodynamics that exploits the differential geometry of the underlying state space. We develop both microcanonical and canonical ensembles, introducing continuous mixed states as distributions on the manifold of quantum states. We call out the experimental consequences for a gas of qudits. We define quantum heat and work in an intrinsic way, including single-trajectory work, and reformulate thermodynamic entropy in a way that accords with classical, quantum, and information-theoretic entropies. We give both the First and Second Laws of Thermodynamics and Jarzynki's Fluctuation Theorem. The result is a more transparent physics, than conventionally available, in which the mathematical structure and physical intuitions underlying classical and quantum dynamics are seen to be closely aligned.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. F. Strocchi. Complex Coordinates and Quantum Mechanics. Rev. Mod. Physics, 38(1):36–40, 1966.
  2. T. W. B. Kibble. Geometrization of Quantum Mechanics. Comm. Math. Phys., 65(2):189–201, 1979.
  3. Some remarks on hamiltonian systems and quantum mechanics. In Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, volume III, pages 35–53. Springer, 1976.
  4. A. Heslot. Quantum mechanics as a classical theory. Phys. Rev. D, 31(6):1341–1348, 1985.
  5. G. W. Gibbons. Typical states and density matrices. J. Geom. Physics, 8(1-4):147–162, 1992.
  6. A. Ashtekar and T. A. Schilling. Geometry of quantum mechanics. In AIP Conference Proceedings, volume 342, pages 471–478. AIP, 1995.
  7. A. Ashtekar and T. A. Schilling. Geometrical Formulation of Quantum Mechanics. In On Einstein’s Path, pages 23–65. Springer New York, New York, NY, 1999.
  8. L. P. Hughston. Geometric aspects of quantum mechanics. Ch. 6 in “Twistor Theory” (Stephen Huggett, ed.) - Lecture Notes in Pure and Applied Mathematics, Vol. 169. Marcel Dekker, 1995.
  9. Geometric quantum mechanics. J. Geom. Physics, 38(1):19–53, 2001.
  10. I. Bengtsson and K. Zyczkowski. Geometry of Quantum States. Cambridge University Press, Cambridge, 2017.
  11. Geometrization of Quantum Mechanics. Theor. Math. Physics, 152(1):894–903, 2007.
  12. D. Chruściński. Geometric Aspects of Quantum Mechanics and Quantum Entanglement. J. Physics: Conf. Ser., 30:9–16, 2006.
  13. G. Marmo and G. F. Volkert. Geometrical description of quantum mechanics—transformations and dynamics. Physica Scripta, 82(3):038117, 2010.
  14. J. Avron and O. Kenneth. An elementary introduction to the geometry of quantum states with pictures. Rev. Math. Physics, 32(02):2030001, 2020.
  15. D. Pastorello. A geometric Hamiltonian description of composite quantum systems and quantum entanglement. Intl. J. Geom. Meth. Mod. Physics, 12(07):1550069, 2015.
  16. D. Pastorello. Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces. Intl. J. Geom. Meth. Mod. Physics, 12(08):1560015, 2015.
  17. D. Pastorello. Geometric Hamiltonian quantum mechanics and applications. Intl. J. Geom. Meth. Mod. Physics, 13(Supp. 1):1630017, 2016.
  18. J. Clemente-Gallardo and G. Marmo. The Ehrenfest Picture and the Geometry of Quantum Mechanics. Il Nuovo Cimento C, 3:35–52, 2013.
  19. The quantum canonical ensemble. J. Math. Physics, 39(12):6502–6508, 1998.
  20. On quantum microcanonical equilibrium. J. Physics: Conf. Ser., 67:012025, 2007.
  21. Thermodynamics of quantum heat bath. J. Physics A: Math. Theo., 49(42):425302, 2016.
  22. Quantum phase transitions without thermodynamic limits. Proc. Roy. Soc. A: Math. Phys. Engin. Sci., 463(2084):2021–2030, 2007.
  23. U Seifert. Stochastic thermodynamics: Principles and perspectives. Euro. Physic. J. B, 64(3-4):423–431, 2008.
  24. U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Physics, 75(12):126001, dec 2012.
  25. Quantum Thermodynamics, volume 657 of Lecture Notes in Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
  26. S. Deffner and S. Campbell. Quantum Thermodynamics. IOP Publishing, 2019.
  27. F. Anza and J. P. Crutchfield. Beyond density matrices: Geometric quantum states. Phys. Rev. A, 103:062218, 2021.
  28. F. Strocchi. An introduction to the mathematical structure of quantum mechanics: A short course for mathematicians. World Scientific, Singapore, 2008.
  29. Khinchin. Mathematical Foundations of Quantum Statistics. Dover: New York, 1951.
  30. Schroedinger. Statistical Thermodynamics. Cambridge University Press, 1952.
  31. J. B. Lasserre. Volume of slices and sections of the simplex in closed form. Optimization Letters, 9(7):1263–1269, 2015.
  32. Information content for quantum states. J. Math. Physics, 41(5):2586–2592, 2000.
  33. F. Anza and J. P. Crutchfield. Quantum information dimension and geometric entropy. Phys. Rev. X Quantum, in press.
  34. G. E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60(3):2721–2726, 1999.
  35. C. Jarzynski. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale. Ann. Rev. Cond. Matt. Physics, 2(1):329–351, 2011.
  36. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 83(3):771–791, 2011.
  37. Nonequilibrium statistical physics of small systems: Fluctuation relations and beyond. Wiley-VCH, 2013.
  38. C Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett., 78(14):2690–2693, 1997.
  39. H. P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press, 2002.
  40. U. Weiss. Quantum dissipative systems. World Scientific, 2012.
  41. C. Gardiner and P. Zoller. Quantum noise. Springer-Verlag, 2010.
  42. H. Carmichael. An open systems approach to quantum optics. Springer-Verlag, 1993.
  43. Stochastic Schrödinger equations. J. Physics A: Math. General, 37(9), 2004.
  44. V. P. Belavkin. A new wave equation for a continuous nondemolition measurement. Phys. Lett. A, 140, 1989.
  45. V. P. Belavkin. A continuous counting observation and posterior quantum dynamics. J. Phys. A, 22, 1989.
  46. V. P. Belavkin. Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes in Proc of Bellmann Continuum Workshop ‘Modelling and Control of Systems’, volume 121 of Lecture Notes in Control and Info. Sci. Springer-Verlag, 1988.
  47. Dissipative geometric phase and decoherence in parity-violating chiral molecules. J. Chem. Phys,, 136, (2012).
  48. Friction-induced enhancement in the optical activity of interacting chiral molecules. Chem. Phys. Lett., 516, 2011.
  49. A Langevin canonical approach to the dynamics of chiral systems: Thermal averages and heat capacity. Chirality, 26, (2014).
  50. A Langevin canonical approach to the dynamics of chiral systems: Populations and coherences. Chirality, 25, (2013).
  51. P. Bargueno and S. Miret-Artes. Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework. Phys. Rev. A, 87, 2013.
  52. P. Bargueno and S. Miret-Artes. The generalized Schrodinger-Langevin equation. Ann. Physics, 346:59–65, 2014.
  53. R. Katz and P. B. Gossiaux. The Schrodinger-Langevin equation with and without thermal fluctuations. Ann. Physics, 368:267–295, 2016.
  54. The Feynman Lectures on Physics–Volume 3. Addison-Wesley, Reading, Massachusetts, 1963.
  55. A geometrical method for the Smoluchowski equation on the sphere. J. Stat. Mech., 083210, (2021).
  56. Random walk on a sphere and on a Riemannian manifold. Phil. Trans. Roy. Soc. London A Math. Phys. Sci., 252, 196.
  57. Path integral approach to quantum brownian motion. Physica A: Stat. Mech. App., 121(3):587–616, 1983.
  58. Quantum tunnelling in a dissipative system. Ann. Physics, 149(2):374–456, 1983.
  59. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1–85, Jan 1987.
  60. Classical trajectory modeling for electronically nonadiabatic collision phenomena. a classical analog for electronic degrees of freedom. J. Chem. Phys., 69, 1978.
  61. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys., 69, 1978.
  62. M. D. Kostin. On the Schrodinger-Langevin equation. J. Chem. Phys., 57, 1972.
  63. G. Stock and M. Thoss. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett., 78, 1997.
  64. D. Chruszinsky and A. Jamiolkovsky. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics. Brikhauser, 2004.
  65. M. Campisi. Quantum fluctuation relations for ensembles of wave functions. New J. Phys., 15:115008, 2013.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: