Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Deep Dive into Adversarial Robustness in Zero-Shot Learning

Published 17 Aug 2020 in cs.CV | (2008.07651v1)

Abstract: Machine learning (ML) systems have introduced significant advances in various fields, due to the introduction of highly complex models. Despite their success, it has been shown multiple times that machine learning models are prone to imperceptible perturbations that can severely degrade their accuracy. So far, existing studies have primarily focused on models where supervision across all classes were available. In constrast, Zero-shot Learning (ZSL) and Generalized Zero-shot Learning (GZSL) tasks inherently lack supervision across all classes. In this paper, we present a study aimed on evaluating the adversarial robustness of ZSL and GZSL models. We leverage the well-established label embedding model and subject it to a set of established adversarial attacks and defenses across multiple datasets. In addition to creating possibly the first benchmark on adversarial robustness of ZSL models, we also present analyses on important points that require attention for better interpretation of ZSL robustness results. We hope these points, along with the benchmark, will help researchers establish a better understanding what challenges lie ahead and help guide their work.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.