Papers
Topics
Authors
Recent
2000 character limit reached

Comparative study of variational quantum circuit and quantum backpropagation multilayer perceptron for COVID-19 outbreak predictions

Published 8 Aug 2020 in quant-ph and cs.LG | (2008.07617v2)

Abstract: There are numerous models of quantum neural networks that have been applied to variegated problems such as image classification, pattern recognition etc.Quantum inspired algorithms have been relevant for quite awhile. More recently, in the NISQ era, hybrid quantum classical models have shown promising results. Multi-feature regression is common problem in classical machine learning. Hence we present a comparative analysis of continuous variable quantum neural networks (Variational circuits) and quantum backpropagating multi layer perceptron (QBMLP). We have chosen the contemporary problem of predicting rise in COVID-19 cases in India and USA. We provide a statistical comparison between two models , both of which perform better than the classical artificial neural networks.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.