Papers
Topics
Authors
Recent
2000 character limit reached

Expected Utilitarianism

Published 19 Jul 2020 in cs.CY | (2008.07321v1)

Abstract: We want AI to be beneficial. This is the grounding assumption of most of the attitudes towards AI research. We want AI to be "good" for humanity. We want it to help, not hinder, humans. Yet what exactly this entails in theory and in practice is not immediately apparent. Theoretically, this declarative statement subtly implies a commitment to a consequentialist ethics. Practically, some of the more promising machine learning techniques to create a robust AI, and perhaps even an artificial general intelligence (AGI) also commit one to a form of utilitarianism. In both dimensions, the logic of the beneficial AI movement may not in fact create "beneficial AI" in either narrow applications or in the form of AGI if the ethical assumptions are not made explicit and clear. Additionally, as it is likely that reinforcement learning (RL) will be an important technique for machine learning in this area, it is also important to interrogate how RL smuggles in a particular type of consequentialist reasoning into the AI: particularly, a brute form of hedonistic act utilitarianism. Since the mathematical logic commits one to a maximization function, the result is that an AI will inevitably be seeking more and more rewards. We have two conclusions that arise from this. First, is that if one believes that a beneficial AI is an ethical AI, then one is committed to a framework that posits 'benefit' is tantamount to the greatest good for the greatest number. Second, if the AI relies on RL, then the way it reasons about itself, the environment, and other agents, will be through an act utilitarian morality. This proposition may, or may not, in fact be actually beneficial for humanity.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.