Papers
Topics
Authors
Recent
2000 character limit reached

StoRIR: Stochastic Room Impulse Response Generation for Audio Data Augmentation

Published 17 Aug 2020 in eess.AS, cs.LG, and cs.SD | (2008.07231v1)

Abstract: In this paper we introduce StoRIR - a stochastic room impulse response generation method dedicated to audio data augmentation in machine learning applications. This technique, in contrary to geometrical methods like image-source or ray tracing, does not require prior definition of room geometry, absorption coefficients or microphone and source placement and is dependent solely on the acoustic parameters of the room. The method is intuitive, easy to implement and allows to generate RIRs of very complicated enclosures. We show that StoRIR, when used for audio data augmentation in a speech enhancement task, allows deep learning models to achieve better results on a wide range of metrics than when using the conventional image-source method, effectively improving many of them by more than 5 %. We publish a Python implementation of StoRIR online

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.