Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Thermodynamic uncertainty relation for systems with unidirectional transitions (2008.06953v1)

Published 16 Aug 2020 in cond-mat.stat-mech and physics.chem-ph

Abstract: We derive a thermodynamic uncertainty relation (TUR) for systems with unidirectional transitions. The uncertainty relation involves a mixture of thermodynamic and dynamic terms. Namely, the entropy production from bidirectional transitions, and the net flux of unidirectional transitions. The derivation does not assume a steady-state, and the results apply equally well to transient processes with arbitrary initial conditions. As every bidirectional transition can also be seen as a pair of separate unidirectional ones, our approach is equipped with an inherent degree of freedom. Thus, for any given system, an ensemble of valid TURs can be derived. However, we find that choosing a representation that best matches the systems dynamics over the observation time will yield a TUR with a tighter bound on fluctuations. More precisely, we show a bidirectional representation should be replaced by a unidirectional one when the entropy production associated with the transitions between two states is larger than the sum of the net fluxes between them. Thus, in addition to offering TURs for systems where such relations were previously unavailable, the results presented herein also provide a systematic method to improve TUR bounds via physically motivated replacement of bidirectional transitions with pairs of unidirectional transitions. The power of our approach and its implementation are demonstrated on a model for random walk with stochastic resetting and on the Michaelis-Menten model of enzymatic catalysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.